3年生 3章 二次方程式(重要問題)全国国公私立入試過去問より ※解から方程式を作る、3次方程式の	,牛生	3次万桯式の考え方(ホ	弘立対策)
---	-----	-------------	-------

 $\boxed{1}$ x の 2 次方程式 $x^2-(k+7)x+k(k+5)=0$ の 1 つの解が x=4 であるとき,k の値を求め よ。また,他の解を求めよ。ただし,k<0 とする。 $\boxed{2}$ x の 2 次方程式 $x^2+ax+6=0$ の解の 1 つは 2 であり,もう 1 つの解は x の 1 次方程式 ax+b=0 の解になっている。このとき,a= である。

③ 2次方程式 $x^2+ax+b=0$ の2つの解が -3, 2のとき、2次方程式 $x^2+bx+a=0$ の解を求めなさい。

$$\boxed{4}$$
 $x = \frac{-1+\sqrt{5}}{2}$ のとき、 $4x^3 + 4x^2 - 2x - 1$ の値を求めよ。

- 5 2 次方程式 $3x^2 8x 2 = 0$ について、次の問いに答えなさい。
 - (1) この2次方程式を解きなさい。
 - (2) (1) で求めた解のうち、正の解の小数部分をpとします。pの値を求めなさい。
 - (3) (2) のとき、 $27p^3 + 18p^2 12p 8$ の値を求めなさい。

3年生 3章 二次方程式(重要問題)全国国公私立入試過去問より ※解から方程式を作る、3次方程式の考え方(私立対策)

- 1 x の 2 次方程式 $x^2-(k+7)x+k(k+5)=0$ の 1 つの解が x=4 であるとき,k の値を求めよ。また,他の解を求めよ。ただし,k<0 とする。
- 解 1 つ か 4 な ので 久 = 4 を 代 又 す ると、 $4^{2}-4(k+7)+k(k+5)=0$ $k^{2}+k-12=0$ (k-3)(k+4)=0 k=3,-4
- k<0 より k=-4 を 与式 (問題を)(二代人すると)

$$\chi^{2}-3 \chi - 4 = 0$$

 $(\chi+1)(\chi-4)=0$
 $\chi=-1,4$
 57 他卵 は -1

- 2 x 0 2 次方程式 $x^2+ax+6=0$ の解の 1 つは 2 であり,もう 1 つの解は x の 1 次方程式 ax+b=0 の解になっている。このとき,a= プロスター である。
 - $\chi = 2 \ \epsilon \ tt \lambda = 3 \epsilon$ $2^{2} + a \times 2 + 6 = 4 + 2a + 6 = 0$ a = -5

 - $\chi = 3 \xi 5 \chi + b = 0 = 1 \xi + b = 0$ -15 + b = 0b = 15

③ 2 次方程式 $x^2 + ax + b = 0$ の 2 つの解が -3, 2 のとき, 2 次方程式 $x^2 + bx + a = 0$ の解を求めなさい。

•
$$\chi = -3$$
, $\chi = -3$, $\chi = -3$, $\chi = -3$, $\chi = -2$, $\chi = 0$ もままたす。 $\chi = -4$ もって $\chi = -4$ もって

• $\chi^{2} + b\chi + a = 0$ |= $(t'\chi \vec{a} \vec{3}\xi)$, $\chi^{2} - 6\chi + | = 0$ $\chi = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4\chi |\chi|}}{2\chi |\chi|}$ $= \frac{6 \pm \sqrt{32}}{2} = \frac{6 \pm 4\sqrt{2}}{2} = 3 \pm 2\sqrt{2}$

$$\boxed{4} x = \frac{-1+\sqrt{5}}{2}$$
 のとき、 $4x^3 + 4x^2 - 2x - 1$ の値を求めよ。

•
$$\chi = \frac{-1 + \sqrt{5}}{2}$$
 $2x = -1 + \sqrt{5}$
 $2x = -1 + \sqrt{5}$
 $2x + 1 = \sqrt{5}$

• $4x^{2} + 4x^{2} - 2x - 1$

= $\chi (4x^{2} + 4x - 2) - 1$

= $\chi (4x^{2} + 4x + 1 - 3) - 1$
 $\chi = \frac{-1 + \sqrt{5}}{2} \times 2 - 1$

= $\chi \times (5 - 3) - 1$
 $\chi = \frac{-1 + \sqrt{5}}{2} \times 2 - 1 = -1 + \sqrt{5} - 1$

= $\chi \times (5 - 3) - 1$

5 2 次方程式 $3x^2 - 8x - 2 = 0$ について、次の問いに答えなさい。

(1) この2次方程式を解きなさい。

(2) (1) で求めた解のうち、正の解の小数部分をpとします。pの値を求めなさい。

(3) (2) のとき, $27p^3 + 18p^2 - 12p - 8$ の値を求めなさい。

(1)
$$\Re \circ \Delta \dot{\Xi}$$
 $\lambda = 3$, $b = -8$, $c = -2$

$$\lambda = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 3 \times (-2)}}{2 \times 3}$$

$$\lambda = \frac{8 \pm \sqrt{88}}{6} = \frac{8 \pm 2\sqrt{22}}{6} = \frac{4 \pm \sqrt{22}}{3}$$

[2] 正の解 は
$$\frac{4+\sqrt{22}}{3}$$
 。 $\frac{4}{10} < \sqrt{22} < \sqrt{25}$ より $4 < \sqrt{22} < 5$ 。 $6 < \sqrt{22} + 4 < 9$ 。 $\frac{6}{3} < \frac{4+\sqrt{22}}{3} < 3$ よって $\frac{7}{3}$ の整幹的は $\frac{1}{3}$

小数部分
$$p = \frac{4+\sqrt{22}}{3} - 2 = \frac{\sqrt{22} - 2}{3}$$

(3)
$$27p^{3}+18p^{2}-12p-8$$

 $=(3p)^{3}+2\times(3p)^{2}-4\times3p-8$
 $3p=t=2\times2$
 $t^{3}+2t^{2}-4t-8$
 $=t^{2}(t+2)-4(t+2)$
 $=(t^{2}-4)(t+2)$
 $=(t+2)^{2}(t-2)$
 $t=3p=3\times\frac{\sqrt{22}-2}{3}$
 $=\sqrt{22}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$
 $=(t+2)^{2}-2$

$$= 22 (\sqrt{22} - 4)$$

$$= 22 \sqrt{22} - 88$$

$$= 24 \sqrt{22} - 4$$

$$= 24 \sqrt{24}$$

$$= 44 \sqrt{24}$$

$$= (4 + 2)(4 + 2)(4 - 2)$$

$$= (4 + 2)^{2}(4 - 2)$$

 $(\sqrt{22} - 2 + 2)^2 (\sqrt{22} - 2 - 2)$