平成30年学力検査

全 日 制 課 程 B

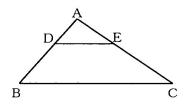
第 2 時 限 問 題

数 学

検査時間 10時15分から11時00分まで

「解答始め」という指示があるまで、次の注意をよく読みなさい。

注 意


- (1) 解答用紙は、この問題用紙とは別になっています。
- (2) 「解答始め」という指示で、すぐ受検番号をこの表紙と解答用紙の決められた欄に書きなさい。
- (3) 問題は(1)ページから(4)ページまであります。表紙の裏と(4)ページの次からは白紙になっています。受検番号を記入したあと、問題の各ページを確かめ、不備のある場合は手をあげて申し出なさい。
- (4) 白紙のページは、計算などに使ってもよろしい。
- (5) 答えは全て解答用紙の決められた欄に書きなさい。
- (6) 印刷の文字が不鮮明なときは、手をあげて質問してもよろしい。
- (7) 「解答やめ」という指示で、書くことをやめ、解答用紙と問題用紙を別々にして机の上に置きなさい。

受検番号 第 番

数 学

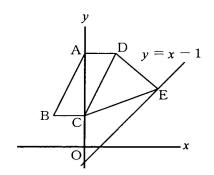
- 1 次の(1)から(9)までの問いに答えなさい。
 - (1) $2 \times (-3) + 10$ を計算しなさい。
 - (2) $6ab \times (-3ab)^2 \div 27ab^2$ を計算しなさい。
 - (3) $(\sqrt{3}+1)^2-2(\sqrt{3}+1)$ を計算しなさい。
 - (4) (x+1)(x+4)-2(2x+3) を因数分解しなさい。
 - (5) 方程式 x(x+1)=2(1-x) を解きなさい。
 - (6) クラスで記念作品をつくるために 1 人 700 円ずつ集めた。予定では全体で 500 円余る見込みであったが、見込みよりも 7500 円多く費用がかかった。そのため、 1 人 200 円ずつ追加して集めたところ、かかった費用を集めたお金でちょうどまかなうことができた。 記念作品をつくるためにかかった費用は何円か、求めなさい。
 - (7) 関数 $y = ax^2$ (aは定数) と y = 3x について, xの値が1から3まで増加するときの変化 の割合が同じであるとき, aの値を求めなさい。
 - (8) 赤玉3個,白玉2個,青玉1個が入っている箱がある。この箱から玉を同時に2個取り出すとき,同じ色の玉を取り出す確率を求めなさい。
- (9) 図で、D、Eはそれぞれ△ABCの辺AB、AC上の点で、 DE//BCである。

AD=2 cm, BC=10 cm, DE=4 cmのとき、線分DBの長さは何cmか、求めなさい。

- 2 次の(1)から(4)までの問いに答えなさい。
 - (1) 相似な2つの立体A, Bがあり、その表面積の比は16:9である。Aの体積が192 cm³のと き、Bの体積は何cm³か、求めなさい。

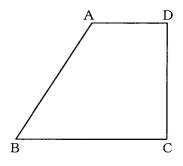
(2) 下の表は、A市における1967年から2016年までの50年間の8月の真夏日(1日の最高気温が30度以上の日)の日数を調べて、度数分布表に整理したものであり、その平均値は25.64日である。また、A市における2017年の8月の真夏日の日数は30日であった。

真夏日の日数	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	計
度数(回)	1	0	0	0	0	1	1	3	1	1	5	4	2	10	3	5	4	8	1	50


これらのことからわかることについて正しく述べたものを、次の**ア**から**カ**までの中から<u>すべて選んで</u>、そのかな符号を書きなさい。

- ア A市における 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の平均値は 25.64 日より大きい。
- **イ** A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の中央値は 13 日と 31 日の真ん中の 22 日である。
- **ウ** A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の中央値と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の中央値は同じである。
- エ A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の範囲は 31 日である。
- オ A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の範囲と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の範囲は同じである。
- **カ** A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の最頻値と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の最頻値は同じである。

(3) 図で、Oは原点、四角形ABCDは平行四辺形で、A、Cは y 軸上の点、辺ADは x 軸に平行である。また、Eは直線 y=x-1上の点である。


点A、Bの座標がそれぞれ(0,6),(-2,2)で、 平行四辺形ABCDの面積と \triangle DCEの面積が等しいと き、点Eの座標を求めなさい。

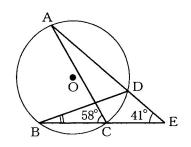
ただし, 点Eのx座標は正とする。

(4) 図のように、体育館の床にAD//BC、ADLDC、AD=10 m、AB=20 m、BC=20 mの台形ABCDがかいてある。

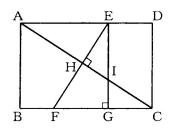
太郎さんが頂点Dから出発して、毎秒5mの速さで台 形ABCDの辺上を頂点A、Bを通って頂点Cに向かっ て移動する。移動の途中で笛が鳴ったとき、その位置か ら直線ADと平行に辺DCに向かって移動し、辺DC上 で停止するものとする。

ただし、笛は頂点Dを出発してから 10 秒以内に鳴るものとし、太郎さんが辺AD上にいるときは、辺AD上を頂点Dまで戻るものとする。

このとき,次の①,②の問いに答えなさい。

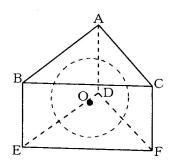

- ① 頂点Dを出発してから4秒後に笛が鳴ったときの、太郎さんが頂点Dを出発してから辺 DC上で停止するまでに移動した道のりは何mか、求めなさい。
- ② 頂点Dを出発してからx 秒後に笛が鳴ったときの、太郎さんが頂点Dを出発してから辺 DC上で停止するまでに移動した道のりをy mとする。 $0 \le x \le 10$ におけるx と y の関係を、グラフに表しなさい。

ただし、x=0のときはy=0とする。

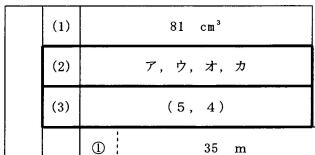

3 次の(1)から(3)までの問いに答えなさい。
ただし、円周率はπとする。また、答えは根号をつけたままでよい。

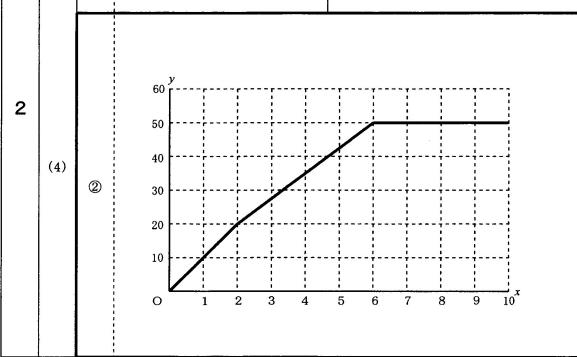
(1) 図で、A、B、C、Dは円Oの周上の点であり、Eは直 線ADとBCとの交点である。

 $\angle ACB = 58^{\circ}$, $\angle DEC = 41^{\circ}$ のとき, $\angle DBC$ の大きさは何度か, 求めなさい。


(2) 図で、四角形ABCDは長方形、Eは辺AD上の点、F、 Gはともに辺BC上の点で、EF \bot AC、EG \bot BC である。また、H、I はそれぞれ線分ACとEF、EGとの交点である。

AB=4cm, AD=6cm, AE=4cmのとき, 次の①,


- ②の問いに答えなさい。
- ① 線分FGの長さは何cmか、求めなさい。
- ② 四角形HFGIの面積は長方形ABCDの面積の何倍か、求めなさい。


(3) 図で、A、B、C、D、E、Fを頂点とする立体は底面の△ABC、△DEFが正三角形の正三角柱である。また、 球Oは正三角柱ABCDEFにちょうどはいっている。 球Oの半径が2cmのとき、次の①、②の問いに答えなさい。

- ① 球Oの表面積は何cm²か、求めなさい。
- ② 正三角柱ABCDEFの体積は何cm³か、求めなさい。

(問題はこれで終わりです。)

	(1)		17 度		
3	(2)	1	8 3 cm	2	2 倍
	(3)	1	16π cm²	2	48√3 cm³

- 1 次の(1)から(9)までの問いに答えなさい。
 - (1) $2 \times (-3) + 10$ を計算しなさい。
 - (2) $6ab \times (-3ab)^2 \div 27ab^2$ を計算しなさい。
 - (3) $(\sqrt{3}+1)^2-2(\sqrt{3}+1)$ を計算しなさい。
 - (4) (x+1)(x+4)-2(2x+3) を因数分解しなさい。
 - (5) 方程式 x(x+1)=2(1-x) を解きなさい。

(3)
$$(\sqrt{3}+1)^2 - 2(\sqrt{3}+1)$$

= $(\sqrt{3})^2 + 2x\sqrt{3}x + 1 - 2\sqrt{3} - 2$
= $3 + 2\sqrt{3} + 1 - 2\sqrt{3} - 2$
= 2

(5)
$$\chi(\chi+1) = 2(1-\chi)$$

 $\chi^2 + \chi = 2 - 2\chi$
 $\chi^2 + 2\chi + \chi - 2 = 0$
 $\chi^2 + 3\chi - 2 = 0$
 $\chi^2 + 5\chi + c = 0$
 $\chi^2 + 5\chi + c = 0$
 $\chi = 1, b = 3, c = -2$

$$\chi = \frac{-3 \pm \sqrt{3^2 - 4 \times [\times (-2)]}}{2 \times 1}$$

(1)
$$2 \times (-3) + 10$$

= $-6 + 10 = 4$

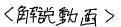
$$(2) \quad 6ab \times (-3ab)^{2} \div 27ab^{2}$$

$$= \frac{26ab \times 9a^{2}b^{2}}{32796}$$

$$= 2a^{2}b$$

$$(4) (x+1)(x+4)-2(2x+3)$$


$$= x^{2}+5x+4-4x-6$$


$$= x^{2}+x-2$$

$$= (x+2)(x-1)$$

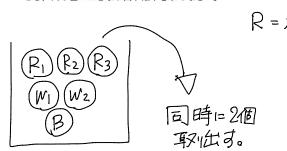
の解の公式

$$ax^{2}+bx+c=0$$
の解
 $\chi = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$

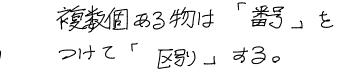
- (6) クラスで記念作品をつくるために1人700円ずつ集めた。予定では全体で500円余る見込み
- し であったが、見込みよりも 7500 円多く費用がかかった。そのため、1人 200 円ずつ追加して集

めたところ、かかった費用を集めたお金でちょうどまかなうことができた。

記念作品をつくるためにかかった費用は何円か、求めなさい。


生徒の人数を义人とに工式は作る。

1/200円ずり」自知したので

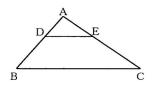

(7) 関数 $y = ax^2$ (aは定数) と y = 3x について、xの値が1から3まで増加するときの変化 の割合が同じであるとき, aの値を求めなさい。

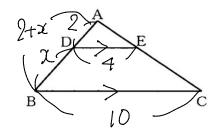
要化の割信 =
$$\frac{1}{20}$$
 地位置 $\frac{1}{20}$ を $\frac{1}$

(8) 赤玉3個,白玉2個,青玉1個が入っている箱がある。この箱から玉を同時に2個取り出す とき,同じ色の玉を取り出す確率を求めなさい。

R=赤玉, W=白玉, B=青玉 を示す。

取り出す 2個を樹形型で表す。

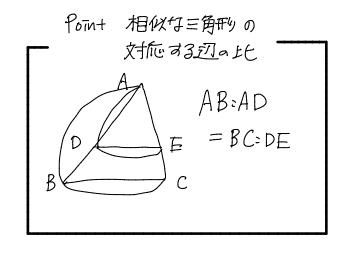

$$\begin{array}{c|c} R_1 & R_2 & O \\ R_3 & O \\ W_1 & X \\ W_2 & X \end{array}$$


 $(\overline{}) (\overline{})$

$$R_{2}-R_{3}$$
 Q $R_{3}-W_{1}$ X $W_{1}-W_{2}$ Q W_{1} X W_{2} X W_{2} X W_{2} X $W_{2}-B$ X X

(9) 図で, D, Eはそれぞれ△ABCの辺AB, AC上の点で, DE//BCである。

AD = 2 cm, BC = 10 cm, DE = 4 cm の とき, 線分DB の長さは何cmか、求めなさい。


Point より AB = 2+ X を用いて 上的, 出生作る。

$$2+x : 2 = 10 : 4$$

$$4(2+x) = 20$$

$$2+x = 5$$

$$x = 3$$

(1) 相似な2つの立体A、Bがあり、その表面積の比は16:9である。Aの体積が192 cm³のとき、Bの体積は何cm³か、求めなさい。

表面養比 = 16:9 = $4^2:3^2$ となり

相似 = 4:3 4500

A:
$$B = 64:27$$

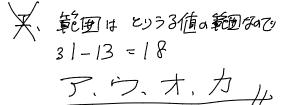
 $192:B = 64:27$
 $\times 3$

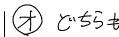
Point

相似比と

(表)面積比と 体積比の関係

- · 面積比= (相似比)2
- · 体積比= (相似比)3


64 × 192の関係が3倍 なって、27×Bの関係も3倍 よ。227×3=81cm³


(2) 下の表は、A市における1967 年から 2016 年までの 50 年間の8月の真夏日(1日の最高気温が 30 度以上の日)の日数を調べて、度数分布表に整理したものであり、その平均値は 25.64 日である。また、A市における 2017 年の8月の真夏日の日数は 30 日であった。

真夏日の日数	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	計
度数(回)	1	0	0	0	0	1	1	3	1	1	5	4	2	10	3	5	4	8	1	50

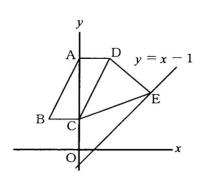
これらのことからわかることについて正しく述べたものを、次の**ア**から**カ**までの中から<u>すべて</u>選んで、そのかな符号を書きなさい。

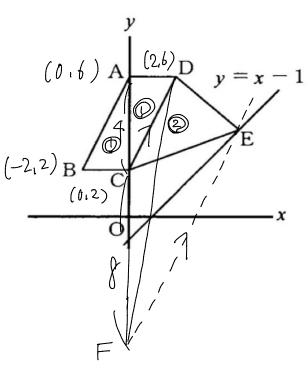
- **ア** A市における 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の平均値は 25.64 日 より大きい。
- イ A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の中央値は 13 日と 31 日の真ん中の 22 日である。
- **ウ** A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の中央値と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の中央値は同じである。
- エ A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の範囲は 31 日である。
- オ A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の範囲と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の範囲は同じである。
- **カ** A市における 1967 年から 2016 年までの 50 年間の 8 月の真夏日の日数の最頻値と 1967 年から 2017 年までの 51 年間の 8 月の真夏日の日数の最頻値は同じである。

2 (1)(2)

力 最頻値は ご55± 26四 ⑦ 2016年記の平均 より分い値を足に 113ので、大きくなる。

正解

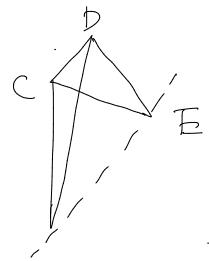

X. 中央値は日数の中央ではなく 度数の中央では3


ウ、2016年までの映値 は 50÷2=25 と26の値の平均 であり 26


 (3) 図で、Oは原点、四角形ABCDは平行四辺形で、A、Cは y 軸上の点、辺ADは x 軸に平行である。また、Eは直線 y=x-1上の点である。

点A, Bの座標がそれぞれ(0,6),(-2,2)で, 平行四辺形ABCDの面積と ΔDCE の面積が等しいとき,点Eの座標を求めなさい。

ただし、点Eのx座標は正とする。



ABC=AACD より ACDの 面積はを ®であると、

△DCE=②となり Eを通りCDとの 平行線と子軸での 交点を下こると、 AC=4、CF=8 の点とする。 下(0,-6)

△ COF=△CDE より (等積変形)

Eはサー2X-6, チェクレー1の交点となる。

$$\begin{cases} y = 2x - 6 \\ y = x - 1 \end{cases} \uparrow t \uparrow \lambda$$

$$|x - 1| = 2x - 6$$

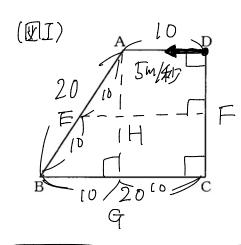
$$5 = x$$

$$\uparrow t \uparrow \lambda$$

(4) 図のように、体育館の床にAD//BC、AD LDC、AD=10 m、AB=20 m、BC=20 mの台形ABCDがかいてある。

太郎さんが頂点Dから出発して、毎秒5mの速さで台 形ABCDの辺上を頂点A、Bを通って頂点Cに向かっ て移動する。移動の途中で笛が鳴ったとき、その位置か ら直線ADと平行に辺DCに向かって移動し、辺DC上 で停止するものとする。

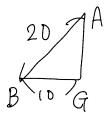
2(3)(4)


ただし、笛は頂点Dを出発してから 10 秒以内に鳴るものとし、太郎さんが辺AD上にいるときは、辺AD上を頂点Dまで戻るものとする。

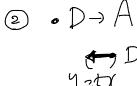
このとき、次の①、②の問いに答えなさい。

- ① 頂点Dを出発してから4秒後に笛が鳴ったときの、太郎さんが頂点Dを出発してから辺 DC上で停止するまでに移動した道のりは何mか、求めなさい。
- ② 頂点Dを出発してからx 秒後に笛が鳴ったときの、太郎さんが頂点Dを出発してから辺 DC上で停止するまでに移動した道のりをy mとする。 $0 \le x \le 10$ におけるx と y の関係を、グラフに表しなさい。

ただし、x=0のときはy=0とする。

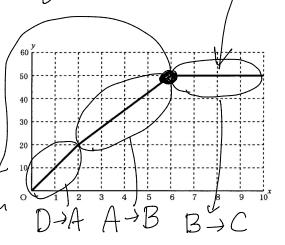

① 千种後 = DOS 4x5=20mのと=3。

まぬる道のりは

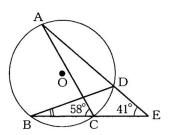

AD + AE + EF = 10 + 10 + 15= 35 cm)

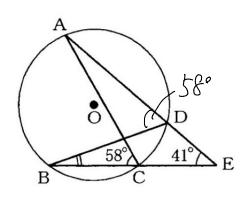
(図I) by ABG CO A AEH

EH=5


BOC BELLETISC ADD 513250m

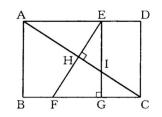
サンク サンク サンラス


• A → B


Bにきたてき (647後) 全ての道のりは

(1) 図で、A、B、C、Dは円Oの周上の点であり、Eは直線ADとBCとの交点である。

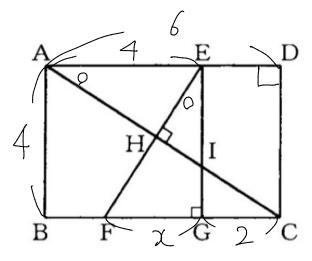
 \angle ACB=58°, \angle DEC=41°のとき, \angle DBCの大きさは何度か、求めなさい。



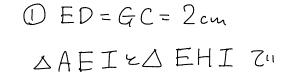
3(1)

- ABの円固角は等いので ∠ACB=∠APB=58°
- $\triangle ADBE$ o列角 $\angle ADB = \angle DBC + \angle DEB$ $58^\circ = \angle DBC + 41^\circ$ $\angle DBC = 58-41$ $= 17^\circ$

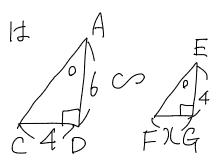
(2) 図で、四角形ABCDは長方形、Eは辺AD上の点、F、Gはともに辺BC上の点で、EF \bot AC、EG \bot BC である。また、H、I はそれぞれ線分ACとEF、EGとの交点である。



AB=4 cm, AD=6 cm, AE=4 cmのとき, 次の①, ②の問いに答えなさい。


- ① 線分FGの長さは何cmか、求めなさい。
- ② 四角形HFGIの面積は長方形ABCDの面積の何倍か、求めなさい。

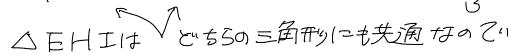
3(2)


求めるFGをZcm とおく。

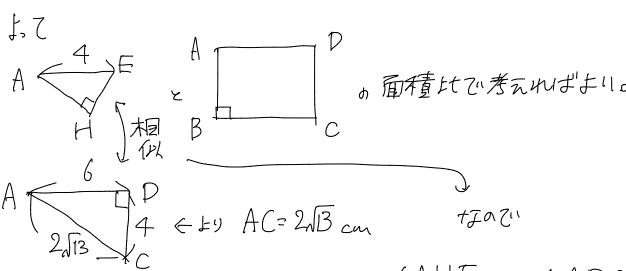
2組の角が等いので相似 とはソレEAI= LHEI と分かる。

LoZ DADCY DEGF

相似と好る。


AD:EG = CD:FG
6:4 = 4 =
$$x$$

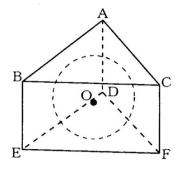
6 $x = 16$
 $x = \frac{16}{63}$ $\frac{3}{3}$ cm


△AEI ∽ △ADC において

$$AD:AE=DC:EI$$

$$6:4=4:EI$$

つまり

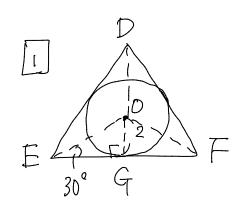

SAHE OD SADCEY

△ADC は長がりABCDの

$$A \longrightarrow F$$
 $A \longrightarrow C = 4 = 26$
 $C = 2 = 13$

(3) 図で、A、B、C、D、E、Fを頂点とする立体は底面の△ABC、△DEFが正三角形の正三角柱である。また、 球Oは正三角柱ABCDEFにちょうどはいっている。

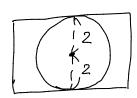
球〇の半径が2cmのとき、次の①、②の問いに答えなさい。



- ① 球Oの表面積は何cm²か、求めなさい。
- ② 正三角柱ABCDEFの体積は何cm³か、求めなさい。
- ① 球の表面積 = $4\pi r^2$ = $4\pi \times 2^2 = 16\pi (cm^2)$

② 三角柱a体積 = 店面 ADEF x 高t BE

でままる。


[2]

10 DE = 10 DE = 10 DF 4000

△DEF = 3x△OEF= 12√3 cm²

2 正面から見ると

高さは一球の直径と等しい ことか分かる。よって4cm

