$1 (-4)^2 - 8 \times \frac{3}{2}$

4 a は正の数とします。x の 2 次方程式 $x^2-2ax-3a=0$ の解の 1 つが x=-a のとき,a の値と他の解を求めなさい。

 $\boxed{2} 16a^2b \div (-10ab^2) \times 5b$

 $5 25 \div (-5) + (-3)^2 \times 2$

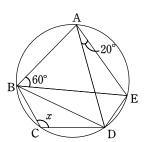
3 右の表は、あるクラスのハンドボール投げの記録を、度数分布表に表したものです。このクラスのハンドボール投げの記録の平均値を、度数分布表から求めなさい。

距離 (m)	度数(人)
0 以上 10 未満	2
$10 \sim 20$	6
$20 \sim 30$	7
$30 \sim 40$	4
$40 \sim 50$	1
合計	20

[6] 次のデータの平均値と中央値を求めなさい。

13, 29, 16, 24, 32, 27, 17, 28, 21

[7] 関数 $y = \frac{a}{x}$ で、x の変域が $1 \le x \le 3$ のとき、y の変域は $b \le y \le 6$ である。a、b の値を それぞれ求めなさい。


102次方程式 $x^2-8x-7=0$ を解きなさい。

 $\boxed{8} \ 3\sqrt{8} - \sqrt{50} + \sqrt{18}$

図のように、半径 10 cm の円 O の周上に 3 点 A, B, C がある。 ∠BAC=72° のとき、斜線部分の面積を求めなさい。

[9] 右の図において、 $\angle x$ の大きさを求めなさい。 ただし、 $\widehat{\mathbf{AB}} = 2\widehat{\mathbf{DE}}$ とする。

12 2 次方程式 $(x-5)^2+4x-21=0$ を解け。

※必ず最終目標は、「 自力で正解できること! 」に置こう。 教えてもらった後、もう一度解けるか確認! 公立10点対策(第11回)

$$\begin{array}{rcl}
\boxed{1} & (-4)^2 - 8 \times \frac{3}{2} \\
& = 16 - 4 \times \frac{3}{2} \\
& = 16 - 12 \\
& = 4
\end{array}$$

$$= \frac{8 \times 55}{2} \times 56$$

$$= \frac{8 \times 55}{2} \times 55$$

$$= - 80$$

「度数分布表の平均値」

(階級値×度級)。和

度駁の和 (it)

階級値 は ○以上 △未満 も見て ○ナ△ の値のこと。

4
$$a$$
 は正の数とします。 x の 2 次方程式 $x^2 - 2ax - 3a = 0$ の解の 1 つが $x = -a$ のとき, a の値と他の解を求めなさい。

② by
$$\lambda = -A \pm \frac{1}{2} = \frac{1}{2} =$$

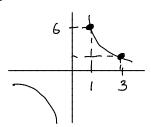
$$5 \frac{25 \div (-5) + (-3)^2 \times 2}{25 \div (-5) + (-3)^2 \times 2} \\
= -5 + 9 \times 2 \\
= -5 + 18 \\
= 13$$

解の1が一の=-1なので

他解は 3/1

20

•	距 離(m)	
	0 以上 10 未満	2
	$10 \sim 20$	6
-	$20 \sim 30$	7
	$30 \sim 40$	4
	$40 \sim 50$	1
	合計	20

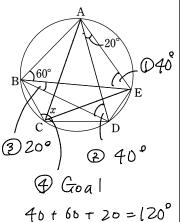

13, 29, 16, 24, 32, 27, 17, 28, 21

[6] 次のデータの平均値と中央値を求めなさい。

• 平均值 =
$$\frac{13+16+17+21+29+27+28+29+32}{9} = \frac{287}{9} = \frac{23}{4}$$

$$=\frac{460}{20}=23 \text{ (m)}$$

- [7] 関数 $y = \frac{a}{x}$ で、x の変域が $1 \le x \le 3$ のとき、y の変域は $b \le y \le 6$ である。a、b の値を それぞれ求めなさい。
- ①より のつのとめかるのでワッラフは以下のようになる。

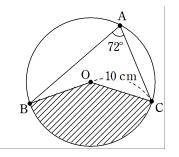

· (1,6)を通るで、ギョダに $f = \frac{1}{3}$ $f = \frac{1}{3}$ fの最小値もとるのでいんなし $7 = \frac{6}{3} = 2$ b = 2

$$8 3\sqrt{8} - \sqrt{50} + \sqrt{18}$$

$$=3\times2\sqrt{2}-5\sqrt{2}+3\sqrt{2}$$

$$=6\sqrt{2}-5\sqrt{2}+3\sqrt{2}$$

- [9] 右の図において、 $\angle x$ の大きさを求めなさい。 ただし、 $\widehat{AB} = 2\widehat{DE}$ とする。
- D AB = 2 DE #0で 円配的 が2倍に ∠DAEx2=∠AEB=40°
- ② AB a 円間角は筆いるで 40°
- 3 ED 1 20°
- ① AB 。四周角40°+ AF 。四周月 + 600円周南20° 1502" 1208/1



$$\chi = \frac{8 \pm \sqrt{64 + 28}}{2}$$

$$= \frac{8 \pm 2\sqrt{23}}{2}$$

$$= 4 \pm \sqrt{23}$$

- [11] 図のように、半径 10 cm の円 O の周上に 3 点 A, B, C がある。∠BAC=72° のとき, 斜線部分の面積を求 めなさい。
- · BCの中心角 ∠BOC = 円周角 / BAC 72°02倍 1507" 144°

$$\frac{144}{360} = 40\pi \left(\frac{360}{360} \right)$$

12 2 次方程式
$$(x-5)^2+4x-21=0$$
 を解け。

12 2次方程式
$$(x-5)^2+4x-21=0$$
 を解け。 $\chi = \frac{6\pm\sqrt{20}}{2}$

$$\chi^2 + 0\chi + 25 + 4\chi - 2l = 0$$

$$\chi^2 - 6\chi + 4 = 0$$

$$\chi = \frac{6\pm\sqrt{(-6)^2-4} + \chi}{2}$$

$$\chi = \frac{6\pm\sqrt{(-6)^2-4} + \chi}{2}$$

$$\chi = \frac{3\pm\sqrt{5}}{2}$$